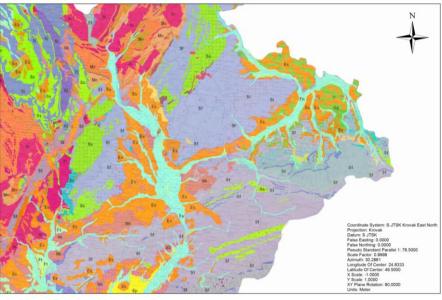
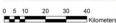


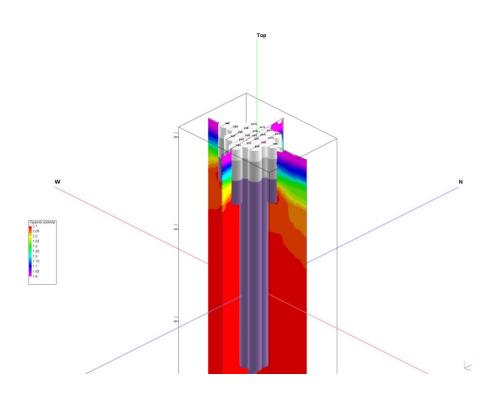
www.vsb.cz

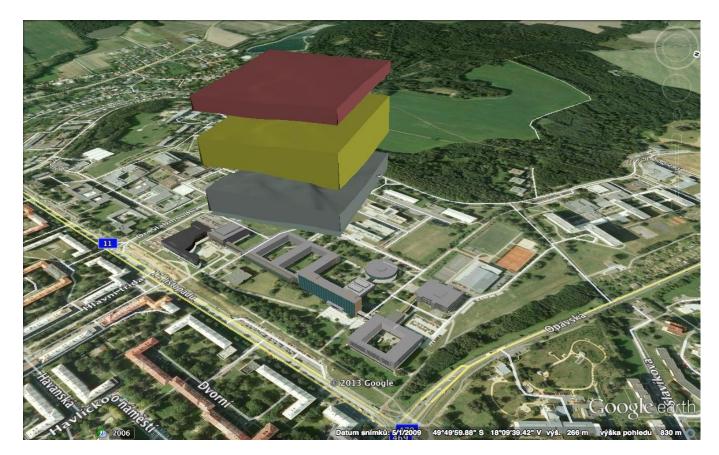
Geothermal Energy

Geothermalinnovation.org




Research in geothermal energy exploitation


- 1. Classification of rock environment for exploitation and storage of heat energy by Borehole Heat Energy Exchangers (BHE) and another geostructures
- 2. Improvement of technology of BHE installation in specific rock environment described by reliable characteristics necessary for design and construction
 - a) in situ measurement and testing
 - b) laboratory testing
 - c) numerical simulation of heat transfer
- 3. Preparation of comprehensive methodology for decision-support making process of investors

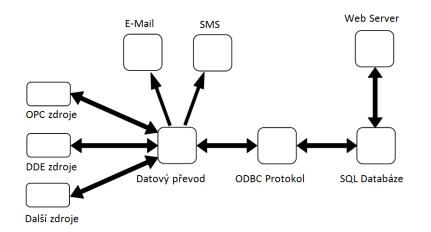

Classification of rock environment

Creation of comprehensive rock environment model

3D model of the rock environment of VSB - TUO

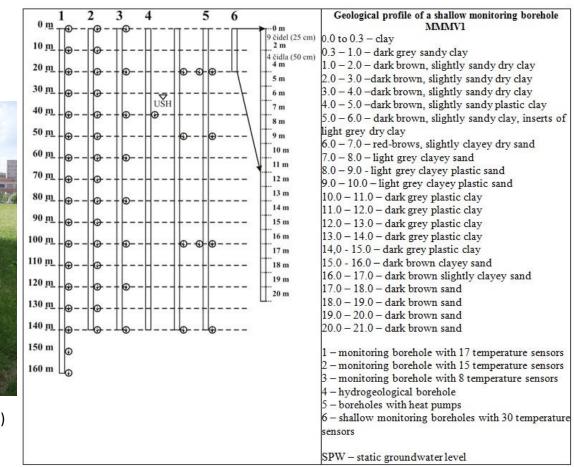
a) Quaternary b) Tertiary c) Lower Carboniferous

In situ measurement and testing

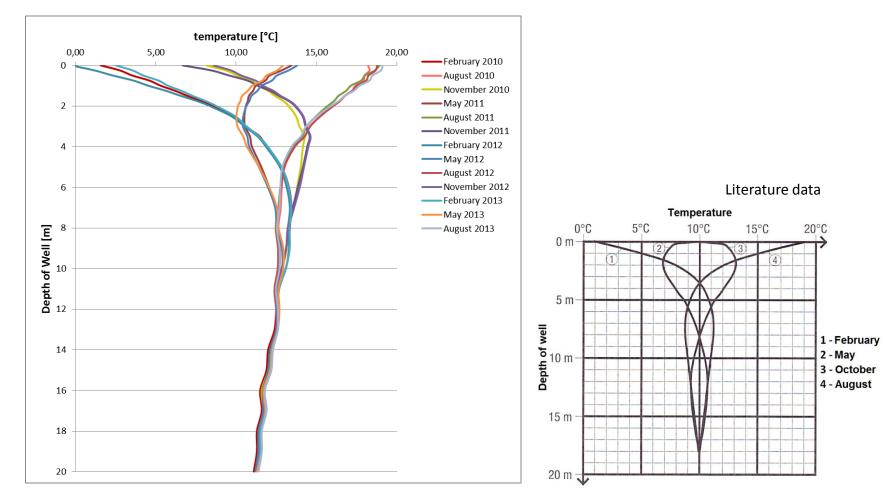


Thermal response test

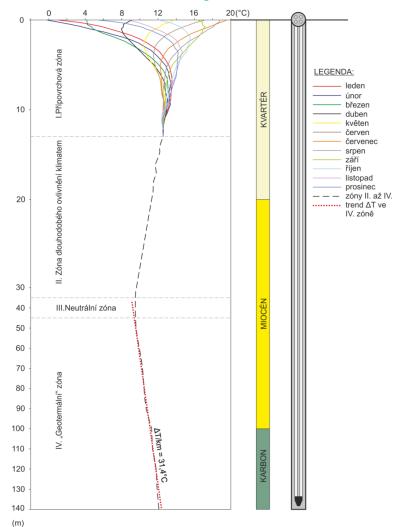
Measurement and quantitative analysis of rock environment heat parameters "in situ"


Scheme of data transfer from BHE to database, web server)

Monitoring of boreholes - temperature

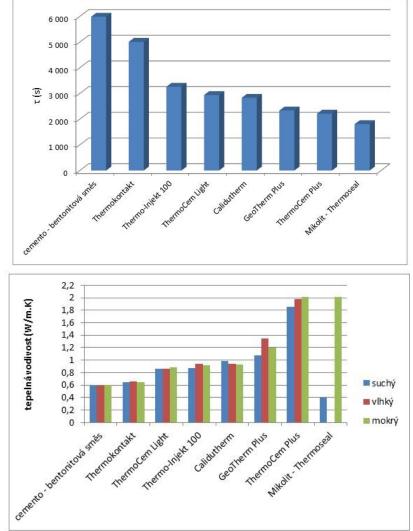


Shallow monitoring borehole (No.: 6)



Location of temperature sensors in monitoring boreholes (Pt 1000)

Determination of seasonal temperature variation

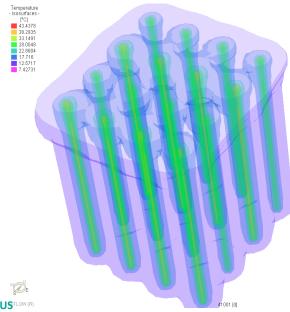

Determination of neutral temperature zone

Laboratory testing of thermal conductivity of grouting mixtures

Thermo STEND S

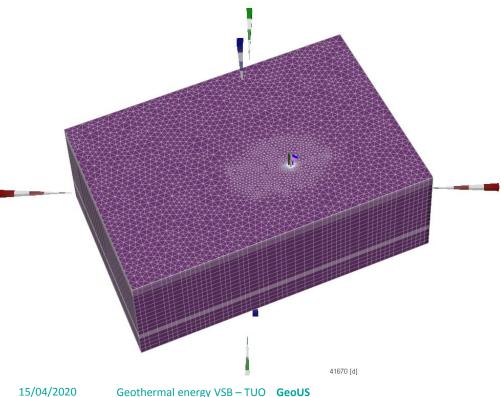
Heat transfer simulation in rock environment for Borehole Heat Exchanger – BHE

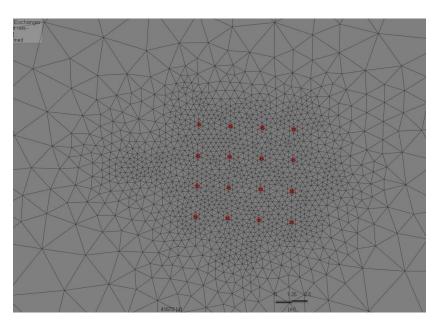
Objectives and activities:


- 1. Analytical heat transport modelling line source.
- 2. Methodology of heat transport modelling.
- 3. Calibration of mathematical model of heat transfer in the rock environment i.e. application on high temperature heat storage BTES GreenGas DPB, a. s.
- 4. Implementation of optimisation module OPTIM (Simplex method) into FEFLOW.

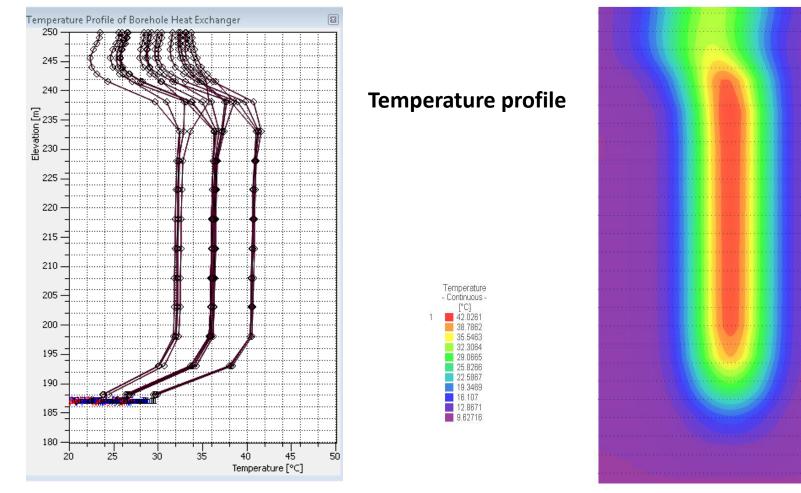
Heat transfer simulation in rock environment for Borehole Heat Exchanger – BHE

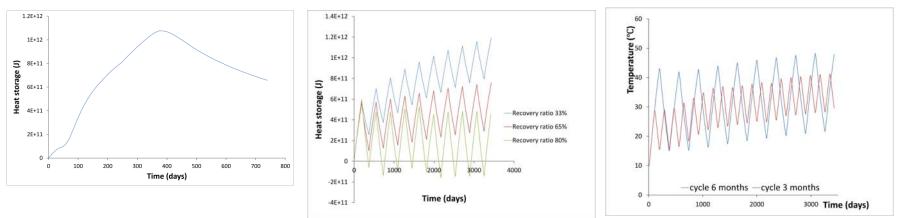
Numerical modelling of heat transfer in the rock environment:


- 1. Software FEFLOW DHI WASY, Berlin (Germany).
- 2. FEM method simulation of conductive and convective heat transfer.
- 3. Full range of boundary conditions (BCs), including BHE.



Heat transfer simulation in rock environment for **Borehole Heat Exchanger – BHE**


Discretization of area – 3D layered model


Discretization of area – detail topview

Heat transfer simulation in rock environment for Borehole Heat Exchanger – BHE

Results of optimisation

- Optimisation of length of recharging and discharging cycles,
- Estimate of heat budget stored in the rock environment which can be utilised later (calculation of lost – dissipation in the rock environment).

Heat budget stored in the rock

Recovery ratio – 33, 65 a 80% Simulation of recharging cycles

Recovery ratio 65% 80% overexploitation 33% long-term temperature rise

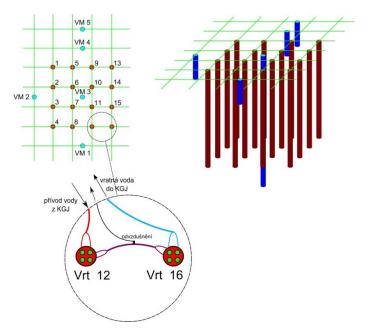
"Seasonal Underground Storage – BTES"

Pilot installation - Green Gas DPB, a.s.

High temperature

• 95 °C

Total borehole depth 1.100 m


- Energy boreholes 16 x 60 m
- Monitoring boreholes 80 m, 15 m

Temperature monitoring

- Fluid
- Rock massif

Monitoring of charging and re-charging heat

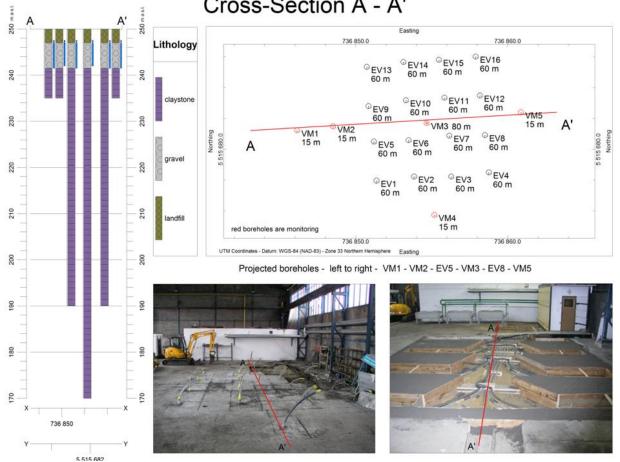
Compatibility with installation at VSB

"Seasonal Underground Storage – BTES"

Scheme of installation Green Gas DPB, a.s.

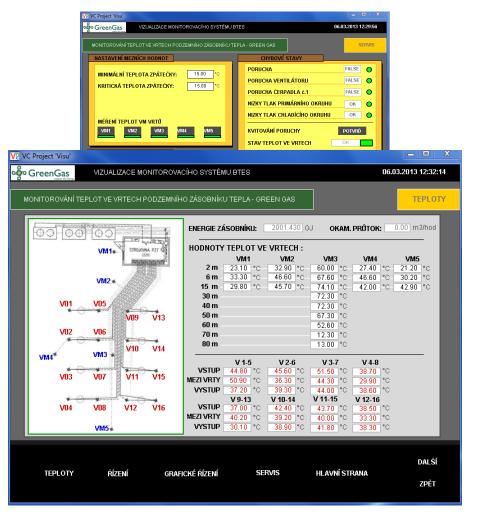
"Seasonal Underground Storage - BTES"

Drilling of BHE for seasonal BTES

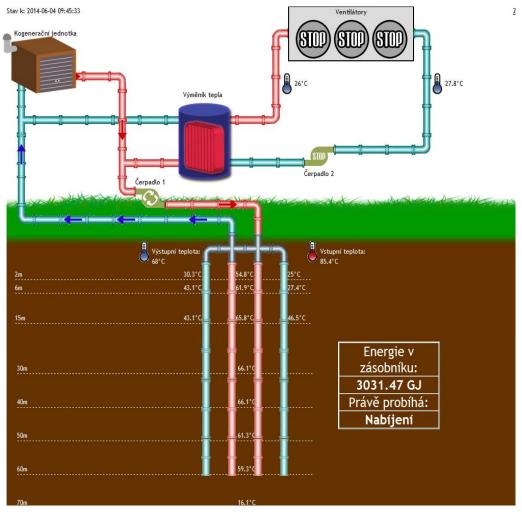


BHE installation

Cross-Section A - A'


"Seasonal Underground Storage - BTES"

Testing of rock environment – Thermal Response Tests at GreenGas, a.s.

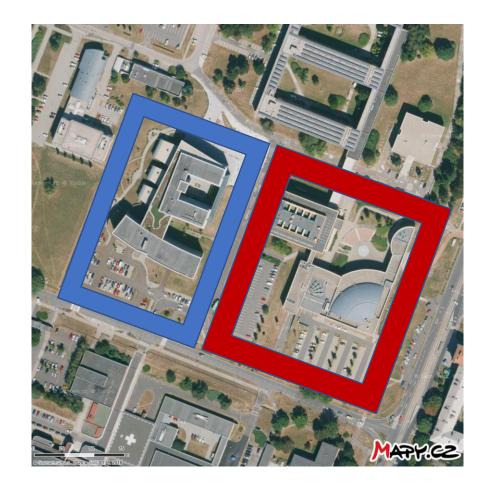

"Seasonal Underground Storage – BTES" – Control system

V2 VC Project 'V	fisu'							2	٢
ୁକ୍ତି Green	as VIZUALIZACE	MONITO	ROVACÍH	IO SYSTÉ	NU BTES		06.0	3.2013 12:31:02	
MONITORC	VÁNÍ TEPLOT VE VRTEC	H PODZE	MNÍHO 2	ZÁSOBNÍK	U TEPLA - GR		eplot ve 🔵 tech	OVLÁDÁN	
	NFO O CHODU	1			VLÁDACÍ PA	ANEL PROCESU			
Naki	jení zásobníku:	OFF				čerpadla č.1 :			
	jení zásobníku:	OFF	0		-	e čerpadla č.2:	s	R OFF	
	čerpadla č.1:	OFF	0			e ventilátoru 1 :		R OFF	
	čerpadla č.2:	ON	0		·	e ventilátoru 2 :	s	R OFF	
	ventilátoru č.1:	OFF	0		·	e ventilátoru 3 :	s	R OFF	
Stav	ventilátoru č.2:	OFF	0			tické řízení ventiláto	u: s	R OFF	
Stav	ventilátoru č.3:	OFF	0						
			_		Zadaný rozd	íl teplot v chladícím	okruhu 5.	00 °C	
Ener	gie v zásobníku:	2001.43	IO GJ		Zadaný nrůt	ok čerpadla č.1: 📃		00 m3/hod	
					zauany prut	0,3 0,3	25	oo maxida	
V2 VC P	roject 'Visu'								- • ×
ာင် ကြီး Gi	eenGas vizu.	ALIZACE	MONITO	ROVACÍ	IO SYSTÉMU	BTES		06.03.	2013 12:33:05
Ĩ.							VENTILÁTORY		
St	av teplot 🦳	г	KOGENER JEDNO			1 OFF			
– 1	e vrtech					\otimes	$ \boxtimes \boxtimes$	4	
						H	ا بُـــْب		cchlazení OK
OV OV	iádání ventilátorů: ZAPNI VY	TIMI		Min.	nabíjecí tlak	VÝMĚNÍK TEPLAVSTUP.	teninta SO		ta zpětného SO
	V1	V1 O		[ок		19.70	•*C	19.60 T15
	dádání ntilátor	V2 ()		eplota do C 91.	KOJ 0 T13		ČERPADLO Č.2		
	V3	<u>va</u> ()	L,	• • <					
Ver	ntilátory AUTO	N OF	F		🚽 🛔 čel	RPADLO Č.1			
		Výstu	ipní tepli	ota 🥂	90	Zadaný průtok čerp. č. 2.00 m3/i		rpadel: rpadla č.1:	OFF
		T11 °C	34.70			Vstupní teplota	Stav če	rpadla č.2:	ON 🔵
	laný rozdíl teplot hladícím okruhu:	5 °C		4	PENDER	3			
Nal	víjení zásobníku: 🚺	OFF C	、			Energie zásobníku: 2001.430 GJ	Ovládár Aktivace čerp	ií čerpadel:	ou or
		OFF C				1	Aktivace čerp		ON OFF
				POI	ZEMNÍ ZÁSOBNÍI			_	
									DALŠÍ
	TEPLOTY I	řízení		GRAFIC	é řízení	SERVIS	HLAVNÍ STR	ANA	
									ZPĚT

"Seasonal Underground Storage – BTES"

Vizualization of heat flow

Geothermal heating system at VSB-TUO


Conference hall

Faculty of Electrical Engineering and Informatics

2x 700 kW 2x 110 boreholes 140 m deep

over 30 km of geothermal boreholes

Geothermal research system at VSB-TUO

Research polygon

Testing and monitoring boreholes with the depth to 160 m

Experimental passive family house with geothermal heating

Passive house with geothermal borehole (in front)

Heat pump

Passive house

Control center

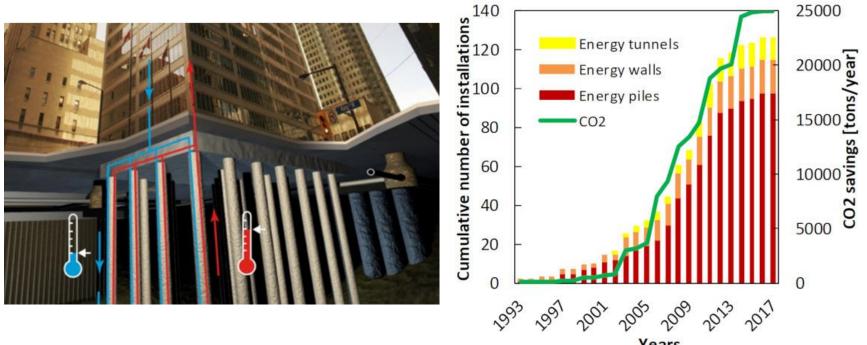
Geothermal borehole detail

Project TAČR: Utilization of the Earth's Crust Heat Energy as Renewable Energy Source Including Verification of Possibility of Heat Energy Accumulation

Project No.: TA01020932 01/2011 - 12/2014 VSB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava - Poruba Partners:

Green Gas DPB, a.s.


DHI a.s.

Energy geostructures

Foundation slab , piles for deep foundations, retaining walls, tunnel lining segments, paved areas (parking etc.)

Years Laloui, L., and Di Donna, A. 2013. Energy geostructures: innovation in underground engineering. ISTE Ltd and John Wiley & sons Inc. [Source: © EPFL-LMS /M. NUTH 2010

15/04/2020 Geothermal energy VSB – TUO GeoUS

Energy geostructures

Crucial challenges:

- increasing knowledge of the coupled thermal- mechanical behaviour of the soil
- increasing knowledge of the coupled thermal- mechanical behaviour of the building material (concrete, concrete mixture) under cyclic load, reliability of material
- increasing knowledge of "rock environment- energy geostructure" interaction under cyclic load
- optimization of coupled thermo-mechanical and hydro-thermal performance of structures regarding the material and geometrical characteristics of structures and pipe loop system inside them
- the interaction of energy structure group

Thank you for your attention

doc. Ing. Jiří Koziorek, Ph.D.

jiri.koziorek@vsb.cz

www.vsb.cz